Abstract

Ultra-fast optical signal processing is a promising technology for future photonic networks. This paper describes possible applications of nonlinear fibers to optical signal processing. The third-order optical nonlinearities in a fiber are discussed by analyzing the interaction of co-propagating optical waves. The properties of a nonlinear fiber are then considered in terms of optimizing the dispersion for achieving phase matching and decreasing walk-off. A highly nonlinear fiber (HNLF) is a practical candidate for an ultra-high-speed signal processor. Using HNLF, the following experiments are successfully demonstated: ultra-broadband wavelength conversion/optical phase conjugation by four-wave mixing, 160 Gb/s optical 3R-regeneration, and optical switching up to 640 Gb/s using a parametric amplified fiber switch. Steps for further improvements are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.