Abstract

We report on dynamic Shubnikov–de Haas (SdH) oscillations that are measured in the optical response, subterahertz transmittance of two-dimensional systems, and reveal two distinct types of oscillation nodes: “universal” nodes at integer ratios of radiation and cyclotron frequencies and “tunable” nodes at positions sensitive to all parameters of the structure. The nodes in both real and imaginary parts of the measured complex transmittance are analyzed using a dynamic version of the static Lifshitz-Kosevich formula. These results demonstrate that the node structure of the dynamic SdH oscillations provides an all-optical access to quantization- and interaction-induced renormalization effects, in addition to parameters one can obtain from the static SdH oscillations. Published by the American Physical Society 2024

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call