Abstract

We describe the development of a beam scanning microscope that can perform optical sectioning based on the principle of confocal microscopy. The scanning is performed by a laser beam diffracted from a dynamic binary hologram implemented using a liquid crystal spatial light modulator. Using the proposed scanning mechanism, unlike the conventional confocal microscopes, scanning over a two-dimensional area of the sample can be obtained without the use of a pair of galvo mirror scanners. The proposed microscope has a number of advantages, such as superior frame to frame repeatability, simpler optical arrangement, increased pixel dwell time relative to the time between two pixels, illumination of only the sample points without pulsing the laser, and absolute control over the amplitude and phase of the illumination beam on a pixel to pixel basis. The proposed microscope can be particularly useful for applications requiring very long exposure time or very large working distance objective lenses. In this paper we present experimental implementation of the setup using a nematic liquid crystal spatial light modulator and proof-of-concept experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call