Abstract

The manipulation of microbubbles by ultrasonic waves has the potential to be a useful technique in therapeutic ultrasound, such as for drug delivery systems and gene delivery systems. The Bjerknes force, which is an acoustic radiation force produced by microbubbles, acts as a driving force on the microbubbles; however, the two types of Bjerknes force make the resultant bubble movement very complex. In this paper, the evaluation of microbubble dynamics under ultrasonic wave radiation based on a laser diffraction method is proposed. The relationship between the microbubble spatial distribution and the diffracted light intensity is discussed on the basis of both theoretical analysis and numerical simulations. Experiments are carried out using ultrasonic wave contrast agent as microbubbles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.