Abstract

In this article, plasmonic effects of spherical nanoparticles were studied. Since the dielectric nanoparticles are nonabsorbent, so scattering cross section and extinction cross-section are the same. Optical scattering of spherical nanoparticles of silicon in the visible range of the electromagnetic spectrum using Maxwell's equations and finite element method was investigated. At the start, the suitable radius for single nanoparticle (due to exposure peaks in the visible range of the electromagnetic spectrum) was selected by comparing four different radiuses. In the following the distance between the pairs of particles for the study of behavior was examined and, ultimately, based on optimized parameters for radius and the distance between the nanoparticles, linear arrays, and the square was designed. Numerical calculations have been done for a plane wave with linear polarization indicates that the peak of the scattering cross section due of resonance between the incident field and surface plasmon nanoparticles. By studying the spectrum of scattering cross section of the single spherical nanoparticle, the nanoparticle pairs, a linear array and a square of spherical nanoparticles were observed that the scattering cross section depends on the particle size, the distance between particles, the polarization and the type of lattice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.