Abstract

Tumor segmentation from magnetic resonance images (MRI) is an error-prone and time-absorbing process. Recently, optical methods have opened a new avenue to tack with the aforementioned problem. In this paper, we propose a novel architecture adapting the Optical Scanning Holography (OSH) to the detection of the abnormal tissue regions in MRI. The proposed method combines an off-axis optical scan, performed by a heterodyne fringe pattern, and a MR image display ensured by a spatial light modulator. The output in-phase component of the scanned current is collected digitally. Hence, a high-precision distribution of biological tissues is extracted using this in-phase component. Its maximum position is exactly the one of the tumor. Meanwhile, this position is used in an Active Contour Model (ACM) to perform a fast segmentation of the extent corresponding to the tumors. Several images of brain tumors from BRATS database, with tumors having different contrast and form, are used to test the proposed system. Parameters reverted by the optical process are used to investigate the detection performance. Further, in terms of tumor segmentation, the proposed OSH-ACM process has high performance metrics compared to some of recently published method. The underlying physics of the precision superiority, presented by the OSH-ACM, is the high-precision extraction of the abnormal tissue regions by the in-phase component of the scanned current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.