Abstract
Optical saturable absorption (SA) in graphene has been intensively studied during the last decades to achieve graphene-based ultrafast pulse generation. We experimentally investigate the optical nonlinearities of transfer-free graphene synthesized by the atomic carbon spraying (ACS) method that is invented for conformal and uniform graphene coating on non-planar device surfaces to enhance the interaction of lasers with the nanostructures. Its successful implementation of nonlinear operations in practical photonic devices is confirmed. The SAs of two other different graphene structures including graphene prepared by chemical vapor deposition (CVD) and reduced graphene oxides (rGOs) by electro-spraying (ES) are quantitatively evaluated as references. All three nanocrystal structures are elucidated by transmission electron microscopy and Raman analysis comparatively and systematically. We confirm in X-ray photoelectron spectroscopy analysis that the contents of sp2 bonds in ACS graphene as an indicator of the nonlinearity is 73.94 %. The measured value reaches the level of CVD graphene (76.70 %) and is much higher than 58.75 % of ES rGOs. Importantly, the ACS graphene displays a steep SA slope with saturation intensity of 32.14 MW cm−2, an order of magnitude lower than conventional ES rGOs, verifying unimpaired nonlinear properties of graphene prepared by the suggested ACS method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.