Abstract

We report optical experiments allowing us to investigate integrable turbulence in the focusing regime of the one-dimensional nonlinear Schrödinger equation (1D NLSE). In analogy with broad spectrum excitation of a one-dimensional water tank, we launch random initial waves in a single mode optical fiber. Using an original optical sampling setup, we measure precisely the probability density function of optical power of the partially coherent waves rapidly fluctuating with time. The probability density function is found to evolve from the normal law to a strong heavy-tailed distribution, thus revealing the formation of rogue waves in integrable turbulence. Numerical simulations of 1D NLSE with stochastic initial conditions quantitatively reproduce the experiments. Our numerical investigations suggest that the statistical features experimentally observed rely on the stochastic generation of coherent analytic solutions of 1D NLSE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.