Abstract

Abstract We report on the fabrication of optical ridge waveguides in ytterbium-doped yttrium aluminum garnet (Yb:YAG) single crystal by applying swift C5+ ion irradiation and the followed femtosecond laser ablation. The planar waveguide layer is first produced by C5+ ion irradiation and the laser ablation is used to microstructure the planar waveguide surface to construct ridge structures. The lowest propagation loss of the ridge waveguide has been determined to be ~2.1 dB/cm. From the confocal micro-fluorescence and micro-Raman spectra obtained from the waveguide regions, the intensities, positions and widths of the emission-line peaks had no obvious changes with respect to those from the bulks, which indicate that C5+ ion irradiation does not affect the bulk-related properties of the Yb:YAG crystal significantly in the waveguide regions. The results obtained in this work suggest potential applications of the Yb:YAG ridge waveguides as integrated laser sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.