Abstract

This work investigates the effect of plasma treatment on the morphology and composition of 15 × 15 mm2 silver nanoparticle (70–80 nm) thin films. The silver nanoparticles are deposited onto thermal silica (SiO2/Si) substrates by spin-coating, then they are treated by an open-to-air microwave argon plasma jet characterized by a neutral gas temperature of 2200 ± 200 K. Scanning electron microscopy analysis reveals that the number of isolated nanoparticles in the film sample decreases after exposure to multiple jet passes, and that polygonal structures with sharp corners and edges are produced. Similar structures with much rounder edges are obtained after conventional thermal annealing at temperatures up to 1300 K. Based on localized surface plasmon resonance analysis in the range of 350–800 nm, the main extinction band of silver nanoparticles experiences a redshift after treatment with the plasma jet or with thermal annealing. Moreover, both treatments induce surface oxidation of the nanoparticles, as evidenced by x-ray photoelectron spectroscopy. However, only the plasma-exposed samples exhibit a significant rise in the surface-enhanced Raman scattering (SERS) signal of oxidized silver at 960 cm−1. 29 29 μm2 mappings of hyperspectral Raman IMAging (RIMA) and multivariate curve resolution analysis by log-likelihood maximization demonstrate that the SERS signal is controlled by large-scale micrometer domains that exhibit sharp corners and edges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.