Abstract
The phenomenological Ginzburg–Landau theory and the charge conservation directly lead to the finite Higgs-mode generation and vanishing charge-density fluctuation in the second-order optical response of superconductors at clean limit. Nevertheless, recent microscopic theoretical studies of the second-order optical response, apart from the one through the gauge-invariant kinetic equation (Yang and Wu, 2019), have derived a vanishing Higgs-mode generation but finite charge-density fluctuation at clean limit. We resolve this controversy by re-examining the previous derivations with the vector potential alone within the path-integral and Eilenberger-equation approaches, and show that both previous derivations contain flaws. After fixing these flaws, a finite Higgs-mode generation through the drive effect of vector potential is derived at clean limit, exactly recovering the previous result from the gauge-invariant kinetic equation as well as Ginzburg–Landau theory. By further extending the path-integral approach to include electromagnetic effects from the scalar potential and phase mode, in the second-order response, a finite contribution from the drive effect of scalar potential to the Higgs-mode generation at clean limit as well as the vanishing charge-density fluctuation are derived, also recovering the results from the gauge-invariant kinetic equation. Particularly, we show that the phase mode is excited in the second-order response, and exactly cancels the previously reported unphysical excitation of the charge-density fluctuation, guaranteeing the charge conservation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.