Abstract

We study the interaction between a topological insulator nanoparticle and a quantum dot subject to an applied electric field. The electromagnetic response of the topological insulator is derived from axion electrodynamics in the quasistatic approximation. Localized modes are quantized in terms of dipolar bosonic modes, which couples dipolarly to the quantum dot. Hence, we treat the hybrid as a two-level system interacting with a single bosonic mode, where the coupling strength encodes the information concerning the nontrivial topology of the nanoparticle. The interaction of the hybrid with the environment is implemented through the coupling with a continuum reservoir of radiative output modes and a reservoir of phonon modes. In particular, we use the method of Zubarev's Green functions to derive an expression for the optical absorption spectrum of the system. We apply our results to a realistic system which consists of a topological insulator nanoparticle made of TlBiSe$_{2}$ interacting with a cadmium selenide quantum dot, both immersed in a polymer layer such as poly(methyl methacrylate). The optical absorption spectrum exhibits Fano resonances with a line shape that strongly depends on the polarization of the electric field as well as on the topological magnetoelectric polarizability $\theta$. Our results and methods can also be applied to nontopological magnetoelectric materials such as Cr$_{2}$O$_{3}$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.