Abstract

The electronic and excitonic optical absorption properties of newly fabricated nanoribbons from biphenylene are investigated via the GW and Bethe–Salpeter equation calculations. The results reveal that the quasiparticle band gaps of R4,6,8n (n=1, 2as, 2s−2) are 25%, 15% and 13% larger than the corresponding regular AGNRs which have almost the same widths. Importantly, all the strongest excitonic absorption peaks of these ribbons locate at visible range of wavelength while their regular counterparts are in infrared range. Furthermore, the first bright bound excitons in these new ribbons are more stable than those in regular ones showing the stronger electron–hole interaction in the biphenylene-based ribbons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.