Abstract

The properties of fluids are studied using unusually small containment spherical resonators. Proper identification of resonant fluid signatures allows determination of pressure and density of the internal gas with great accuracy using an appropriate equation of state (EOS). Low noise and high sensitivity detection of vibration are critical parameters to characterizing the contained gas when its pressure approaches 1 atm or less. The benefits of using spherical resonators to determine fluid properties are discussed, and some example calculations of sound speed are presented. In addition to measuring fluids, a comparative experimental approach is taken to explore and, eventually, to optimize vibration detection. In the experiments, two detection methods, a contact piezoelectric transducer (PZT) device and a non-contact optical device, are compared simultaneously and quantitatively. This is done in a unique manner without change in vibration coupling to the sample between tests. A commercially available resonant ultrasound spectroscopy system is used as the contact system, while another commercial device (used as the non-contact vibration detector) combined with the same excitation source (used in the contact system) comprises the other system. The non-contact detector is an optical interferometric receiver that provides adaptation to optically rough surfaces and high sensitivity to acoustic displacements through optical interference in photorefractive GaAs. Both vibration detection systems are compared with particular emphasis on displacement sensitivity, frequency response, and noise level. Furthermore, the results from comparing detection modalities are presented, and their effects on fluid properties measurement are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call