Abstract

Optical-resolution photoacoustic microscopy (OR-PAM) can visualize wavelength-dependent optical absorption at the cellular level. However, OR-PAM suffers from a limited depth of field (DOF) due to the tight focus of the optical excitation beam, making it challenging to acquire high-resolution images of samples with uneven surfaces or high-quality volumetric images without z-scanning. To overcome this limitation, we propose needle-shaped beam photoacoustic microscopy (NB-PAM), which can extend the DOF to up to ~28-fold Rayleigh lengths via customized diffractive optical elements (DOEs). The DOE generate a needle beam with a well-maintained beam diameter, a uniform axial intensity distribution, and negligible sidelobes. The advantage of using NB-PAM is demonstrated by both histology-like imaging of fresh slide-free organs using a 266 nm laser and in vivo mouse brain vasculature imaging using a 532 nm laser. The approach provides new perspectives for slide-free intraoperative pathological imaging and in-vivo organ-level imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.