Abstract
The opacity of conventional ultrasound transducers can impede the miniaturization and workflow of current photoacoustic systems. In particular, optical-resolution photoacoustic microscopy (OR-PAM) requires the coaxial alignment of optical illumination and acoustic-detection paths through complex beam combiners and a thick coupling medium. To overcome these hurdles, we developed a novel OR-PAM method on the basis of our recently reported transparent lithium niobate (LiNbO3) ultrasound transducer (Dangi et al., Optics Letters, 2019), which was centered at 13 MHz ultrasound frequency with 60% photoacoustic bandwidth. To test the feasibility of wearable OR-PAM, optical-only raster scanning of focused light through a transducer was performed while the transducer was fixed above the imaging subject. Imaging experiments on resolution targets and carbon fibers demonstrated a lateral resolution of 8.5 µm. Further, we demonstrated vasculature mapping using chicken embryos and melanoma depth profiling using tissue phantoms. In conclusion, the proposed OR-PAM system using a low-cost transparent LiNbO3 window transducer has a promising future in wearable and high-throughput imaging applications, e.g., integration with conventional optical microscopy to enable a multimodal microscopy platform capable of ultrasound stimulation.
Highlights
Optical-resolution photoacoustic microscopy (OR-PAM) has recently gained significant attention from the biomedical-imaging community as it provides labelfree optical contrast from physiologically relevant tissue chromophores that are located a few millimeters deep, with subcellular spatial resolution [1,2,3,4,5]
As reported in our recent work [20], a 250 μm thick Y-cut 36◦ LiNbO3 wafer was sputtered with 200 nm thick indium tin oxide (ITO) on both sides and diced into square pieces of 10 × 10 mm2, which resulted in ~80% optical transparency in the visible and near-infrared optical-wavelength regions
The transducer was evaluated by analyzing its electrical impedance using a vector network analyzer (Agilent E5100A, Keysight Technologies, Inc., Santa Rosa, CA, USA)
Summary
Optical-resolution photoacoustic microscopy (OR-PAM) has recently gained significant attention from the biomedical-imaging community as it provides labelfree optical contrast from physiologically relevant tissue chromophores that are located a few millimeters deep, with subcellular spatial resolution [1,2,3,4,5]. In OR-PAM, a tightly focused laser pulse illuminates the tissue and generates wideband acoustic waves from light-absorbing chromophores that are detected by an acoustic transducer. Conventional OR-PAM setups use complex imaging geometries to coaxially align optical illumination and acoustic detection paths. In early OR-PAM setups [6], coaxial alignment was achieved using an acoustic-optic prism combiner consisting of one right-angle prism and one rhomboid prism pressed. Tissue-generated photoacoustic waves propagated through the rhomboid prism and were reflected by the silicone oil layer into the ultrasound detector attached to the prism. Since the entire imaging head, consisting of the above acoustic-optic prism combiner, the transducer, and the focused light, was moved to scan the subject, these systems exhibited slow acquisition speed, limited field of view (FOV), and significant acoustic loss
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.