Abstract

Optical resolution photoacoustic microscopy (ORPAM) has demonstrated both high resolution and rich contrast imaging of optical chromophores in biologic tissues. To date, sensitivity remains a major challenge for ORPAM, which limits the capability of resolving biologic microvascular networks. In this study, we propose and evaluate a new ORPAM modality termed as optical resolution photoacoustic computed microscopy (ORPACM), through the combination of a two-dimensional laser-scanning system with a medical ultrasonographic platform. Apart from conventional ORPAMs, we record multiple photoacoustic (PA) signals using a 128-element ultrasonic transducer array for each pulse excitation. Then, we apply a reconstruction algorithm to recover one depth-resolved PA signal referred to as an A-line, which reveals more detailed information compared with conventional single-element transducer-based ORPAMs. In addition, we carried out both in vitro and in vivo experiments as well as quantitative analyses to show the advanced features of ORPACM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call