Abstract

Formation of cell chains is a straightforward and efficient method to study the cell interaction. By regulating the contact sequence and interaction distance, the influence of different extracellular cues on the cell interaction can be investigated. However, it faces great challenges in stable retaining and precise regulation of cell chain, especially in cell culture with relatively low cell concentration. Here we demonstrated an optical method to realize the precise regulation of cell chain, including removing or adding a single cell, adjusting interaction distance, and changing cell contact sequence. After injecting a 980-nm wavelength laser beam into a tapered optical fiber probe (FP), a cell chain of Escherichia colis (E. colis) is formed under the optical gradient force. By manipulating another FP close to the cell chain, a targeted E. coli cell can be trapped by the FP and removed from the chain. Further, the targeted cell can be added back to the chain at different positions to change the cell contact sequence. The experiments were interpreted by numerical simulations and the impact of cell sizes and shapes on this method was analyzed.

Highlights

  • Was used for the formation of Escherichia coli (E. coli) cell chain to realize the cell–cell contact

  • Once a laser beam is injected into fiber probe (FP) 1, E. colis are trapped one after another along the axial direction of FP 1 to form a chain under the optical gradient force (Fig. 1a)[24]

  • The probe tips were immersed in the E. coli solution which was dropped on a glass slide with an injector

Read more

Summary

Introduction

Was used for the formation of Escherichia coli (E. coli) cell chain to realize the cell–cell contact. After turning off the laser in FP 2, E. coli 5 is gradually rotated and orientated along the axial direction of FP 1 (Fig. 1d), changing the cell contact sequence again (from 1–2–3–4–6 to 1–2–3–5–4–6).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call