Abstract
AbstractThe reflection of light from distributed microplatelets is an effective approach to creating color and controlling the optical properties in paints, security features, and optical filters. However, predictive tools for the design and manufacturing of such composite materials are limited due to the complex light–matter interactions that determine their optical response. Here, the optical reflectance of individual reflective microplatelets and of polymer‐based composites containing these engineered platelets as an aligned, dispersed phase are experimentally studied and analytically calculated. Transfer‐matrix calculations are used to interpret the effect of the platelet architecture, the number of platelets, and their size distribution on the experimentally measured reflectance of composites prepared using a previously established magnetic alignment technique. It is demonstrated that the reflectance of the composites can be understood as the averaged response of an array of Fabry–Pérot resonators, in which the microplatelets act as semi‐transparent flat reflectors and the polymer as cavity medium. By using an analytical model and computer simulations to describe the interaction of light with platelets embedded in a polymer matrix, this work provides useful tools for the design and fabrication of composites with tailored optical reflectance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.