Abstract

We demonstrate terahertz (THz) generation at megahertz repetition rate by optical rectification in GaP crystals, using excitation average power levels exceeding 100 W. The laser source is a state-of-the-art diode-pumped Yb:YAG SESAM-mode-locked thin-disk laser, capable of generating 580 fs pulses at an average power up to 120 W and a repetition rate of 13.4 MHz directly from a one-box oscillator, without the need for any extra amplification stages. In this first demonstration, we measure a maximum THz average power of 78 μW at a central frequency of 0.8 THz. Our results show that optical rectification of state-of-the-art high average power ultrafast sources in nonlinear crystals is within reach and paves the way toward high average power, ultrafast laser pumped THz sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.