Abstract

Reading out the charge from a very large liquid argon detector, such as proposed for next generation proton decay and long baseline neutrino detectors, represents a significant challenge. Current proposals suggest using wires in the liquid or a two-phase approach that can provide some gain via amplification in the gas phase. We present here work on an alternative new approach in which the charge is read out by optical means following generation of electroluminescence, such as in a THGEM (Thick Gas Electron Multiplier) mounted within the liquid. This has the potential for significant advantages by providing both simpler readout electronics and significant charge gain, without the need for the complexities of dual phase operation. Tests with a silicon photomultiplier (SiPM) mounted above a THGEM, all submerged in liquid argon, have allowed first demonstration of the technique. Sensitivity to 5.9 keV 55Fe gamma events was observed with an estimated gain of 150 photoelectrons per drifted electron. We review the concepts and results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.