Abstract

Active optical metadevices have attracted growing interest for the use in nanophotonics owing to their flexible control of optics. In this work, by introducing the phase-changing material Ge2Sb2Te5 (GST), which exhibits remarkably different optical properties in different crystalline states, we investigate the active optical radiation manipulation of a resonant silicon metasurface. A designed double-nanodisk array supports a strong toroidal dipole excitation and an obvious electric dipole response. When GST is added, the toroidal response is suppressed, and the toroidal and electric dipoles exhibit pronounced destructive interference owing to the similarity of their far-field radiation patterns. When the crystallization ratio of GST is varied, the optical radiation strength and spectral position of the scattering minimum can be dynamically controlled. Our work provides a route to flexible optical radiation modulation using metasurfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.