Abstract

We investigate the effects of linearly polarized optical radiation on the cyclotron motion of an electron wave packet, considering the full quantum dynamics of the system. Analysis of the Landau-level (LL) spectrum reveals that only intra band cyclotron oscillation frequencies contribute to the effective oscillation frequency of the motion, whereas scattering between electron and hole Landau levels are forbidden. We find that the wave packet dynamics is significantly affected by varying the polarization direction of the electromagnetic radiation. The optical radiation is also affected by its interaction with electrons. Interestingly, we find that chaotic effects are induced by radiation in the dynamics of electron wave packet in an applied uniform magnetic field. Chaotic signatures in the dynamics are diagnosed by computing the relevant out-of-time-order correlation function and analyzed by using Poincaré maps. We attribute the appearance of such chaotic transport of electron wave packet to the nonlinear interaction between the optical radiation and internal cooperative oscillating mode produced by the interplay of relativistic (zitterbewegung) and cyclotron oscillations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.