Abstract

We have developed a theory of the quantum yield for plasmonic nanowaveguide where the cladding layer is made of an ensemble of quantum dots and the core layer consists of an ensemble of metallic nanoparticles. The bound states of the confined probe photons in the plasmonic nanowaveguide are calculated using the transfer matrix method based on the Maxwell equations. It is shown that the number of bound states in the nanowaveguide depends on the dielectric properties of the core and cladding layers. The surface plasmon polaritons (SPPs) produced by the metallic nanoparticles interacts with the excitons of the quantum dots. The radiative and nonradiative linewidths of excitons in the quantum yield are calculated using the quantum mechanical perturbation theory. We have found that the quantum yield decreases as the dipole–dipole interaction between metallic nanoparticles increases. We have also calculated the photoluminescence and found that the enhancement in photoluminescence is due to the SPPs coupling. On the other hand, the quenching in the photoluminescence is due to the quantum yield. We compared our theory with experiments of a nanowaveguide where the core is fabricated from Ag- nanoparticles and the cladding is fabricated from the perovskite quantum dots. A good agreement between theory and experiments is found. Our analytical expressions of the quantum yield and photoluminescence can be used by experimentalists to proforma new types of experiments and for inventing new types of nanosensors and nanoswitches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call