Abstract

Antimonene, a promising conductor for next-generation 2D-based devices, has its contact resistance significantly influenced by the van der Waals (vdW) interaction within its heterostructure. In this study, we report the quantification of the vdW coupling between multilayer antimonene and bilayer MoS2 by ultrafast coherent vibration spectroscopy. By utilizing a femtosecond laser, we excited coherent acoustic vibrations in the multilayer-antimonene on substrate-supported bilayer MoS2, and the relative displacement at the vdW heterojunction was detected with the aid of bilayer MoS2. The photoexcited strain pulse generated in the multilayer-antimonene was observed as it transported to the bilayer MoS2, explaining the distortion at the beginning of the oscillation. By analyzing the thickness-dependent oscillation frequencies, we determine the effective vdW elastic constant between multilayer-antimonene and MoS2 to be (1.9 ± 0.2) × 1018N/m3. This non-destructive optical technique offers a significant advance in the evaluation of vdW interactions at 2D metal-semiconductor interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.