Abstract

We present a design for a spin-exchange optical pumping system to produce large quantities of highly polarized 129Xe. Low xenon concentrations in the flowing gas mixture allow the laser to maintain high Rb polarization. The large spin-exchange rate between Rb and 129Xe through the long-lived van der Waals molecules at low pressure, combined with a high flow rate, results in large production rates of hyperpolarized xenon. We report a maximum polarization of 64% achieved for a 0.3 l/h Xe flow rate, and maximum magnetization output of 6 l/h at 22% polarization. Our findings regarding the polarization dependence on temperature, nitrogen partial pressure, and gas mixture flow velocity are also reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.