Abstract

Quantum-state preparation has a wide range of applications ranging from quantum optics to quantum metrology to fundamental physics precision measurements. In the context of nuclear $\ensuremath{\beta}$-decay correlation experiments such as the ones using argon, one needs to prepare a source of highly polarized atoms. Creating such a state-prepared sample amounts to generating a so-called stretched state, i.e., a state with the maximal projection of the total angular momentum along the quantization axis. This is typically achieved through optical pumping. Since this technique inherently depends on cycles of absorption followed by spontaneous emission, it may lead to undesirable heating and population loss. It is therefore crucial to devise polarization methods with both optimized efficiency and minimized drawbacks. We propose and compare various schemes, which we have been investigating numerically in the case of argon-35 atoms. We show that polarization degrees as high as $99.99%$ can be obtained within less than 140 $\ensuremath{\mu}\mathrm{s}$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.