Abstract
We present a simple and intuitive model based on the impulse response of linear electrical systems for describing the propagation of optical pulses through a dynamic Fabry–Perot resonator whose refractive index changes with time. Our model shows that the adiabatic wavelength conversion process in resonators results from a scaling of the round-trip time with index changes. For pulses longer than the cavity round-trip time, we find that more energy can be transferred to the new wavelength when the input pulses are slightly detuned from the cavity resonance and the refractive index does not change too rapidly. In fact, the optimum duration of index changes scales with the photon lifetime of the resonator. We describe the evolution of the shape and spectrum of picosecond pulses inside a resonator under a variety of input conditions and with the magnitude and duration of index variations. We also apply our general theory to the case of pulses whose widths are shorter than the round-trip time and derive an analytical expression for the output field under quite general conditions. This analysis reveals a shifting of the spectral comb as well as compression of the temporal pulse train that depends on the both the magnitude and sign of the index change. Our results should find applications in the area of optical signal processing using resonant photonic structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.