Abstract

In this work, luminescence of nanoparticles of zinc oxide synthesized in electric discharge in liquid media under the influence of intensive ultrasonic vibrations prior to cavitation and after the start of cavitation regime have been studied. The increase in the luminescence intensity of nanoparticles obtained by ultrasonic cavitation can be explained by the formation of defects in oxide crystals under the influence of intense mechanical action. In the process of synthesis, the particles are exposed not only to the action of electromagnetic fields, but also to shock waves during the collapse of cavitation bubbles, which leads to the formation of defective valence structures and delocalization of electrons. Plasma discharge in liquid under intensive ultrasonic field exhibiting peculiar characteristics has been demonstrated to be a powerful technique for obtaining zinc oxide nanoparticles with hexagonal shape and narrow particle size distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call