Abstract

The optical constants of V${\mathrm{O}}_{2}$ have been determined between 0.25 and 5 eV, both below and above the semiconductormetal transition temperature ${T}_{t}=340\ifmmode^\circ\else\textdegree\fi{}$ K. Reflectivity and transmission spectra have been measured on both single crystals and thin films. The reflectivity spectra of the bulk crystals were measured with $E\ensuremath{\perp}c$ axis in the tetragonal phase (or $\ensuremath{\perp}a$ axis in the monoclinic phase) and $E\ensuremath{\parallel}$ to these axes. While there are some differences in magnitude between the dielectric constants obtained from thin-film and single-crystal measurements, the structural features are in good agreement. Below ${T}_{t}$ there are four prominent absorption peaks centered near photon energies of 0.85, 1.3, 2.8, and 3.6 eV. Above ${T}_{t}$ metallic free carrier absorption is observed below 2.0 eV, but the same two absorption peaks near 3 and 4 eV are present. The energy location and polarization dependence of these two higher energy peaks can be related to similar absorption peaks in rutile, and are interpreted using the rutile band structure. The results are consistent with a picture in which filled bands arising primarily from oxygen $2p$ orbitals are separated by approximately 2.5 eV from partially filled bands arising primarily from vanadium $3d$ orbitals. Transitions from the filled $2p$ bands are responsible for the high-energy peaks in the optical absorption in both the high- and low-temperature phases. In the high-temperature metallic phase there is evidence that there is overlap among the $3d$ bands such that at least two bands are partially occupied by the extra $d$-electron per vanadium ion. In the low-temperature semiconductor phase a band gap of approximately 0.6 eV opens up within the $3d$ bands separating two filled bands from higher lying empty bands. The two absorption peaks at 0.85 and 1.3 eV are due to transitions from these two filled bands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.