Abstract

A comprehensive study of the properties of undoped and iodine-doped CdTe structures by photoluminescence (PL) and photoreflectance (PR) is reported. Undoped bulk CdTe and iodine-doped CdTe layers grown by metalorganic molecular beam epitaxy on (lOO)-oriented CdTe and (211)B-oriented GaAs substrates with electron concentrations ranging from 1014 to mid-1018 cm-3 were included in this study. Lineshape modeling of 80KPL and PR spectra indicated the presence of both free exciton and donor-hole transitions at the higher doping levels. Strong PL and PR signals were also observed at room temperature. If only a single transition is considered for the analysis of the 300K spectra, the PL emission peak and the PR transition energy both exhibit a strong dependence on electron concentration for doped layers. However, lineshape modeling of the room-temperature spectra indicated the presence of multiple transitions consisting of free exciton and direct band-to-band transitions. The use of two transitions resulted in a constant value of bandgap over the entire range of conductivities studied. A strong correlation remained between the broadening of the PR and PL spectra and excess carrier concentration ND-NA. In addition, the E1 transition energy measured by PR was found to vary dramatically with growth conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.