Abstract

Periodic density functional theory (DFT) and hybrid ONIOM time-dependent DFT/MM cluster calculations have been carried out to investigate the ground- and excited-state properties of the crystalline structures of the enolic and ketonic tautomeric forms of a propoxy-substituted dibenzothiazolylphenol molecule (OPr), a prototype for systems undergoing the excited-state intramolecular proton transfer process. The crystalline structures of the tautomeric forms are well reproduced and, as expected, at the ground state, the enol polymorph is predicted to be more stable than the keto one. At the excited state, the effect of the environment on time-dependent DFT calculations has been accounted for by including a charge embedding scheme, and the influence of different kinds of point charges (Mulliken, CM5, RESP and Q Eq) in determining the optical properties of the central molecule has been investigated. The results reveal that, in fair agreement with experimental data, the absorption (emission) energies of the enol (keto) OPr molecule is red-shifted of about 3 (3) nm going from the gas phase to chloroform and blue-shifted of 10 (23) nm going from the gas to the crystal phase when the electronic embedding with Mulliken charges is employed. The electrostatic embedding influences the excited-state properties more severely than the ground-state properties, and apart the Q Eq charges, all other models provide Stokes shifts in reasonable agreement with experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.