Abstract

In this work, polyvinyl chloride (PVC) polymer films doped with 0, 2, 4, and 6 wt% Al2O3 nanoparticles with average size of 10 nm were prepared by solution casting route. Al2O3 nanoparticles are found to possess rhombohedral crystal structure, and PVC is partly crystallized as confirmed with XRD analysis. SEM images showed that Al2O3 nanoparticles are well distributed in the PVC film surface. The direct optical energy gap (Eopt) decreased from 5.05 to 3.60 eV and Urbach energy (EU) increased with increasing Al2O3 concentration. The typical excitation energy for electronic transitions (E0), the dispersion energy (Ed), refractive index, dipole strength (f), average oscillator wavelength (λ0), oscillator strength parameter (S0), optical conductivity, and both static and high-frequency dielectric constants are found to increase with increasing Al2O3 content. The third-order nonlinear optical susceptibility (χ(3)) and the nonlinear refractive index (n2) were estimated. Also, the ratio of free carriers to effective mass (N/m*) increased from 2.69 × 1057 to 170.91 × 1057 m−3 kg−1 with increasing Al2O3 nanoparticles percentage. Finally, the group velocity dispersion (GVD), dispersion coefficient for material dispersion (D), and third-order dispersion (TOD) are found to increase upon increasing Al2O3 filler ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.