Abstract
To investigate the transient change of soot optical properties resulting from pulsed laser heating of soot in a cooled exhaust plume we have simultaneously performed cw light extinction at 405 and 830 nm and elastic light scattering at 1064 nm. A reversible increase to the 830-nm light extinction of up to 7%, observed during the time period where the soot was hot, suggests a temperature-dependent light absorption refractive index function, E(m λ ). At low fluence, small permanent increases of E(m λ ) of <2% were also observed. 405-nm extinction measurements revealed that the soot likely contained material which continued to absorb 405-nm radiation when desorbed, thus complicating measurement interpretation. 1064-nm light scattering measurements showed a gradual decrease of scattering propensity with increasing laser fluence up to the point of material loss, which is consistent with the expected decrease of the structure factor of the soot aggregates as they expand. It is concluded that variations of the optical properties are occurring at the time of laser-induced incandescence (LII) emission, which should be accounted for in time-resolved LII measurement interpretation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.