Abstract

Abstract A T-matrix approach is used to obtain the orientation-averaged scattering and absorption cross sections of randomly oriented particle clusters, and the average angular distribution of the radiation scattered by them. The coefficients involved in the expansion of the phase function are obtained from this T-matrix approach, and used in a multiple scattering formalism to characterize the angular distribution of the diffuse radiation propagating through a particulate coating perpendicularly illuminated with collimated visible radiation. Asymmetry between forward and backward propagating diffuse radiation intensities is taken into account by means of this multiple scattering approach, which is based on solving the radiative transfer equation for successive scattering order contributions. A four-flux model is applied to compute the reflectance in terms of wavelength of the incident radiation and particle concentration. An application of the formalism is carried out to predict the optical properties of titanium dioxide pigmented polymer coatings, in terms of the pigment volume fraction and the degree of aggregation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call