Abstract

AbstractStructural colors generated by photonic crystals have become the focus of research in recent years due to its promising advantages of long-term stability and environmentally friendly properties compared with conventional pigments and dyes. The band gap range of photonic crystals can be controlled by changing the structure parameters of photonic crystals, and then the color of photonic crystals can be modulated. In order to study the influence of different structures on the color of photonic crystals, this study obtains periodically arranged cylindrical photonic crystals by copying the pore structures. In addition, the reflection spectra and microstructure were analyzed. The results show that the spectral half-width of the cylindrical photonic crystal is somewhat wider than that of the master plate, and the spectral reflectivity is reduced. When the incident angle increased from 15° to 45°, the wavelengths of structural colors move to longer wavelength at different viewing angles after duplicate process. The project introduces a fabrication method of two-dimensional photonic crystals, which has broad application prospects in green printing, imaging, security and other fields.KeywordsPhotonic crystalStructural colorPeriodic structureNanophotonic structures

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call