Abstract

AbstractOxyfluoride glasses of xLaF3–(60 − x)LaO3/2–40NbO5/2 (x = 0, 5, 10, 35) and xLaF3–(60 − x)LaO3/2–30NbO5/2–10AlO3/2 (x = 0, 10, 20, 30) were prepared using a levitation technique. Both the glass‐transition temperature, Tg, and onset crystallization temperature, Tc, were lowered by substituting a part of the oxygen with fluorine in the glasses. An appropriate amount of fluorine maximized the difference between the temperatures, ΔT (= Tc − Tg), indicating the improvement in the glass‐forming ability. The atomic packing densities of the glasses were approximately 60%, which gradually increased with the fluorine content. The absorption edge of the glasses shifted toward the shorter wavelength region in the ultraviolet spectra and toward the longer region in the infrared spectra by fluorine substitution. In addition, in one of the oxyfluoride glasses, a wide transparency from 307 nm to 9.2 µm was realized. Furthermore, the glass exhibited superior optical properties, with a combination of a high refractive index, nd, of 2.020 and low wavelength dispersion, vd, of 30.1. The effect of fluorine substitution on the nd and its vd was analyzed using the Lorentz–Lorenz dispersion formula.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.