Abstract

In this paper, the exact solution of Schrodinger equation for multi-layered quantum dot (MLQD) within the effective mass approximation and dielectric continuum model is obtained with finite and infinite confining potential (CP). The MLQD is a nano-structured semiconductor system that consists of a spherical core (GaAs) and a coated spherical shell (Ga $$_{1-x}$$ Al $$_{x}$$ As) as the whole dot is embedded inside a bulk material (Ga $$_{1-y}$$ Al $$_{y}$$ As). Using the obtained energies, wave functions and taking advantage of numeric calculations, the oscillator strength, refractive index and absorbtion coefficient change associated with intersubband electronic transition from the ground state to the first allowed excited state are investigated for different CPs (both finite and infinite) and shell thicknesses. The results show that all values of ground state energy for large core dot radius approach the same value (the energy of bulk material) independent of CPs and shell thicknesses. Also it is shown that the optical properties are strongly affected by the changes in CPs and shell thicknesses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.