Abstract

Thin ultradisperse diamond (UDD) layers deposited from a water suspension are studied by optical and x-ray photoelectron spectroscopy (XPS). The effective band gap determined by the 104-cm−1 criterion for ozone-cleaned UDD is 3.5 eV. The broad structureless photoluminescence band (380–520 nm) is associated with radiative recombination through a system of continuously distributed energy levels in the band gap of diamond nanoclusters. The optical absorption of the material at 250–1000 nm originates from absorption on the disordered nanocluster surface containing threefold-coordinated carbon. The surface of UDD clusters subjected to acid cleaning contains nitrogen-oxygen complexes adsorbed in the form of NO 3 − nitrate ions. Annealing in a hydrogen atmosphere results in desorption of the nitrate ions from the cluster surface. The evolution of the oxygen (O1s) and nitrogen (N1s) lines in the XPS spectra under annealing of a UDD layer is studied comprehensively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call