Abstract

To investigate the optical properties in quasi-regular porous-silicon-based dielectric Period-Doubling and Rudin-Shapiro multilayer systems, we study here the reflection of light from these structures. The Period-Doubling and Rudin-Shapiro structures are fabricated in such a way that the optical thickness of each layer is one quarter of 600 and 640 nm respectively. We find that porous silicon Period-Doubling dielectric multilayers could demonstrate the optical properties similar to the classical periodic Febry–Perot interference filters with one or multiple resonant peaks, but with an advantage of having total optical thickness much lesser than the periodic structures. Additionally, light propagation in porous silicon Rudin-Shapiro structures is investigated for the first time, both theoretically and experimentally. The reflectance spectra of the structures exhibit photonic band gaps centered at predetermined wavelengths. In both cases, numerical simulation of light transmission is performed using transfer matrix method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.