Abstract

We report on a study of the ac conductivity and magneto-optical properties of metallic ferromagnetic (III,Mn)V semiconductors in the infrared to visible spectrum. Our analysis is based on the successful kinetic exchange model for (III,Mn)V ferromagnetic semiconductors. We perform the calculations within the Kubo formalism and treat the disorder effects pertubatively within the Born approximation, valid for the metallic regime. We consider an eight-band Kohn-Luttinger model (six valence bands plus two conduction bands) as well as a ten-band model with additional dispersionless bands simulating phenomenologically the upper-mid-gap states induced by antisite and interstitial impurities. These models qualitatively account for optical-absorption experiments and predict new features in the mid-infrared Kerr angle and magnetic-circular-dichroism properties as a function of Mn concentration and free carrier density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call