Abstract
The preparation of gold particle coated silica microspheres is described and the optical absorption spectra for various surface coverages of gold particles are presented. Onion-shell particles with the structure silica-gold-silica are also described. An effective medium model is used to quantify the surface plasmon shifts observed in such particles, which predicts the shifts in surface plasmon band for both solvent refractive index and surface coverage. The resultant microspheres exhibit absorption spectra resembling those of the isolated nanocrystals. However they possess extinction cross-sections orders of magnitude higher than the nanocrystals and can be centrifuged and redispersed more easily than the parent nanocrystals. The same effect can be obtained by coating silica spheres with gold nanorods, so that the plasmon absorption band can be tuned through the visible and NIR wavelength range. It is proposed that such micron-sized “nanoparticles” provide a practical means to amplify the unique optical properties of nanocrystals and make them more amenable to colloid processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.