Abstract
We experimentally studied the comprehensive optical properties of the laser lines and fluorescent spectrum generated by a continuous tunable cholesteric liquid crystal (CLC) laser array. We found that the laser lines generated from a CLC with a right-handed circular helix were right-handed circular polarized and laser lines generated from a CLC with a left-handed circular helix were left-handed circular polarized. Inside the photonic band gap, the CLC structure with right-(left-) handed helicity suppressed the fluorescence generated with right (left) circular polarized light, and instead the suppressed right (left) circular polarized light energy moved to the outside of the photonic band gap, so we can say that the fluorescence intensity outside of the photonic band gap is enhanced with right (left) handed circular polarized light. Depending on the position of the photonic band gap, the fluorescence quantum yield value increased by up to ~15%. These enhanced fluorescence intensities at the PBG edge will evolve into lasing at the upper lasing threshold. It is particularly interesting to see that the fluorescence intensity and shape could be controlled by adjusting the external geometrical factor of the photonic band gaps. The lasing threshold of the CLC lasers was in the range of 1.5-5.3 μJ/pulse. For CLC laser device applications, it is necessary and essential to know the optical properties of the generated laser lines and of the fluorescence spectrum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.