Abstract

We present time-resolved and spatially-resolved photoluminescence (PL) measurements of InGaN inclusions in a GaN matrix. The structures were grown by metal-organic chemical vapor deposition on sapphire and Si(111) substrates. Nonresonant pulsed excitation yields a broad PL peak, while resonant excitation into the nonresonant PL intensity maximum results in an evolution of a sharp resonant PL peak, having a spectral shape defined by the excitation laser pulse and a radiative decay time close to that revealed for PL under nonresonant excitation. Observation of a resonantly excited narrow PL line gives clear proof of the quantum dot (QD) nature of luminescence in InGaN–GaN samples. Cathodoluminescence (CL) and micro-PL measurements demonstrate sharp emission lines from single QD states. The recombination dynamics of single QD’s and the whole QD ensemble were investigated. Monoexponential decay was observed for the PL of single QD’s. For similar transition energies different time constants were obtained. Therefore the nonexponential decay observed for the whole ensemble is attributed to the coexistence of QD’s having similar ground-state transition energies, but significantly different electron–hole overlap.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.