Abstract
The effect of structural properties and the morphology of Ge@PAA nanocomposites synthesized by thermal deposition of Ge on porous anodic alumina matrices with different porosity on the band gap value and PL properties is investigated. PL in the range of 330–520 nm may be due to F and F2 luminescent centers in the surface of nanopores of PAA matrices. The density of electronic states in this interface depends on the temperature of matrices during deposition and on the surface morphology. The role of radiative recombination centers is played by the broken bonds in a thin intermediate Gex–Aly–Oz layer in the Ge/oxide matrix interface. No obvious effect of the crystalline structure of germanium nanoparticles on the PL maximum position is observed, but the spatial localization of electron–hole pairs of small-sized Ge crystallites of which nanoparticles consist leads to an increase in the optical band gap.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.