Abstract

We present a joint experimental and theoretical investigation of the electronic excitation spectra of the tryptophan-silver complex. The photodissociation spectrum of gas-phase [Trp-Ag]+ was measured from 215 to 330 nm using a quadrupole ion trap coupled to an optical parametric-oscillator laser. The calculated time-dependent density functional theory (TD-DFT) absorption spectra for different prototypes of structures are presented. Low-energy transitions that are experimentally observed are only calculated for the charge-solvation (CS) structures. These transitions are a signature of the metal-pi interaction in [Trp-Ag]+. The recorded spectrum is compared to a Boltzmann average of the absorption spectrum obtained from direct molecular dynamics (MD) simulations involving simultaneous transitions to excited states based on semiempirical configuration interaction (CI) calculations. The results demonstrate that charge transfer can be photoinduced from the indole ring to the silver atom.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.