Abstract

Quantum dots provide a unique opportunity to study the confinement effects of electronic wave function on the properties of materials. We have investigated the optical properties of graphene quantum dots synthesized using ultra-fast light–matter interactions followed by one step reduction process. Atomic-scale morphological information suggests the presence of both zigzag and armchair edges in these quantum dots. Optical characterizations were performed using absorption, photoluminescence, and infrared spectroscopy. A shift in the emission spectrum and disappearance of n → π* transition in the absorption spectrum on reduction of the ablated samples confirmed the formation of graphene quantum dots. First principles calculations are in good agreement with the experimentally reported infrared data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.