Abstract

The optical properties of Eu3+-doped aluminophosphate glass containing a high concentration of Ag2O and SnO co-dopants (8 mol% of each) are reported. Glass preparation is carried out by melt-quenching, and a subsequent in situ monitored heat treatment (HT) is carried out for the reduction of ionic silver to Ag nanoparticles (NPs) via reducing agent tin(II). An enhanced ultraviolet broadband excitation range for Eu3+ ions is realized for the melt-quenched glass, likely due to the creation of molecule-like silver species such as Ag+–Ag+ dimers. The real-time optical monitoring of the glass during isothermal HT shows the steady development of the surface plasmon resonance peak of Ag NPs near 420 nm. Concurrently exciting Eu3+ ions in situ at 420 nm unveils the plasmonic diluent effect manifested through the quenching of Eu3+ luminescence. The decay times of the 5D0 emitting state in Eu3+ ions in the melt-quenched and NP-doped glasses are measured and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.