Abstract

Dy3+ - and Eu3+ -codoped SrWO4 phosphor powders were prepared using a solid-state reaction technique by changing the molar concentration of Eu3+ within the range of 0 to 15 mol% at a fixed Dy3+ concentration of 5 mol%. The effects of Dy3+ and Eu3+ doping on the structural, morphological, and optical properties of SrWO4:Dy3+, Eu3+ phosphors were investigated via Xray diffraction, scanning electron microscopy, and photoluminescence spectrophotometry, respectively. Irrespective of the concentrations of Dy3+ and Eu3+ ions, the crystal structures of all the phosphors were tetragonal, and the grains exhibited a tendency to agglomerate. The emission spectra of Sr0.925WO4:5 mol% Dy3+ contained an intense yellow band at 573 nm arising from the 4F9/2 → 6H13/2 electric dipole transition of Dy3+, as well as three weak emission lines. When the Eu3+ ions were incorporated into the SrWO4:Dy3+ phosphors, a strong red emission peak at 615 nm originating from the 5D0 → 7F2 transition of Eu3+ appeared in addition to the four emission bands centered at 481, 573, 662, and 750 nm, which result from the 4f-4f transitions of Dy3+. The emission intensity decreased as the Eu3+ concentration increased up to 15 mol% due to concentration quenching, which resulted from dipole-dipole interactions. The results suggest that the color emissions and intensities of SrWO4:Dy3+, Eu3+ phosphors can be tuned from yellow to white to red by varying the types of ions used and the ratio of Dy3+ to Eu3+ ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.