Abstract

We report the Raman, continuous-wave (CW), and time-resolved photoluminescence (PL) measurements in a series of multilayer Si/Si <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1-x</sub> Ge <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</sub> samples with an island-like morphology and precise control over the chemical composition in the range of 0.096 les x les 0.61. In the samples with x continuously increasing from 0.096 to 0.55, an increase in the intensity of the Raman signal related to the Ge-Ge vibrations correlates with a red shift in the PL peak position and an increase in the activation energy of the PL thermal quenching. Time-resolved PL measurements reveal 1-10-ms PL components. The highest observed PL quantum efficiency (better than 1% at low temperature) is found in the samples with x~0.5, where the carrier recombination presumably occurs at sharp Si/SiGe interfaces that exhibit type-II band alignment, with a small (to the order of several milli-electron volts) barrier for electrons and deep potential wells for the holes localized within the Ge-rich Si <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1-x</sub> Ge <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</sub> islands. In the samples with Ge concentration close to 0.61, we observe a strong, step-like increase in the strain, and a significant evidence of strain-induced SiGe interdiffusion that results in the decrease in the PL quantum efficiency

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.